719 research outputs found

    Simplified models for photohadronic interactions in cosmic accelerators

    Full text link
    We discuss simplified models for photo-meson production in cosmic accelerators, such as Active Galactic Nuclei and Gamma-Ray Bursts. Our self-consistent models are directly based on the underlying physics used in the SOPHIA software, and can be easily adapted if new data are included. They allow for the efficient computation of neutrino and photon spectra (from pi^0 decays), as a major requirement of modern time-dependent simulations of the astrophysical sources and parameter studies. In addition, the secondaries (pions and muons) are explicitely generated, a necessity if cooling processes are to be included. For the neutrino production, we include the helicity dependence of the muon decays which in fact leads to larger corrections than the details of the interaction model. The separate computation of the pi^0, pi^+, and pi^- fluxes allows, for instance, for flavor ratio predictions of the neutrinos at the source, which are a requirement of many tests of neutrino properties using astrophysical sources. We confirm that for charged pion generation, the often used production by the Delta(1232)-resonance is typically not the dominant process in Active Galactic Nuclei and Gamma-Ray Bursts, and we show, for arbitrary input spectra, that the number of neutrinos are underestimated by at least a factor of two if they are obtained from the neutral to charged pion ratio. We compare our results for several levels of simplification using isotropic synchrotron and thermal spectra, and we demonstrate that they are sufficiently close to the SOPHIA software.Comment: Treatment of high energy interactions refined, additional black body benchmark added (v2), some references corrected (v3). A Mathematica notebook which illustrates the implementation of one model can be found at http://theorie.physik.uni-wuerzburg.de/~winter/Resources/AstroModel/Sim-B.html . 46 pages, 14 (color) figures, 7 tables. Final version, accepted for publication in Ap

    An Enhanced Hardware Description Language Implementation for Improved Design-Space Exploration in High-Energy Physics Hardware Design

    Get PDF
    Detectors in High-Energy Physics (HEP) have increased tremendously in accuracy, speed and integration. Consequently HEP experiments are confronted with an immense amount of data to be read out, processed and stored. Originally low-level processing has been accomplished in hardware, while more elaborate algorithms have been executed on large computing farms. Field-Programmable Gate Arrays (FPGAs) meet HEP's need for ever higher real-time processing performance by providing programmable yet fast digital logic resources. With the fast move from HEP Digital Signal Processing (DSPing) applications into the domain of FPGAs, related design tools are crucial to realise the potential performance gains. This work reviews Hardware Description Languages (HDLs) in respect to the special needs present in the HEP digital hardware design process. It is especially concerned with the question, how features outside the scope of mainstream digital hardware design can be implemented efficiently into HDLs. It will argue that functional languages are especially suitable for implementation of domain-specific languages, including HDLs. Casestudies examining the implementation complexity of HEP-specific language extensions to the functional HDCaml HDL will prove the viability of the suggested approach

    Magnetic Phase Diagrams of Manganites-like Local-Moment Systems with Jahn-Teller distortions

    Full text link
    We use an extended two-band Kondo lattice model (KLM) to investigate the occurrence of different (anti-)ferromagnetic phases or phase separation depending on several model parameters. With regard to CMR-materials like the manganites we have added a Jahn-Teller term, direct antiferromagnetic coupling and Coulomb interaction to the KLM. The electronic properties are self-consistently calculated in an interpolating self-energy approach with no restriction to classical spins and going beyond mean-field treatments. Further on we do not have to limit the Hund's coupling to low or infinite values. Zero-temperature phase diagrams are presented for large parameter intervals. There are strong influences of the type of Coulomb interaction (intraband, interband) and of the important parameters (Hund's coupling, direct antiferromagnetic exchange, Jahn-Teller distortion), especially at intermediate couplings.Comment: 11 pages, 9 figures. Accepted for publication in Phys. Rev.

    Effect of malachite green in presence of surface actants

    Get PDF
    Effect of malachite green in presence of surface actant

    On proton synchrotron blazar models: the case of quasar 3C 279

    Get PDF
    In the present work we propose an innovative estimation method for the minimum Doppler factor and energy content of the gamma-ray emitting region of quasar 3C 279, using a standard proton synchrotron blazar model and the principles of automatic photon quenching. The latter becomes relevant for high enough magnetic fields and results in spontaneous annihilation of gamma-rays. The absorbed energy is then redistributed into electron-positron pairs and soft radiation. We show that as quenching sets an upper value for the source rest-frame gamma-ray luminosity, one has, by neccessity, to resort to Doppler factors that lie above a certain value in order to explain the TeV observations. The existence of this lower limit for the Doppler factor has also implications on the energetics of the emitting region. In this aspect, the proposed method can be regarded as an extension of the widely used one for estimating the equipartition magnetic field using radio observations. In our case, the leptonic synchrotron component is replaced by the proton synchrotron emission and the radio by the VHE gamma-ray observations. We show specifically that one can model the TeV observations by using parameter values that minimize both the energy density and the jet power at the cost of high-values of the Doppler factor. On the other hand, the modelling can also be done by using the minimum possible Doppler factor; this, however, leads to a particle dominated region and high jet power for a wide range of magnetic field values. Despite the fact that we have focused on the case of 3C 279, our analysis can be of relevance to all TeV blazars favoring hadronic modelling that have, moreover, simultaneous X-ray observations.Comment: 12 pages, 11 figures, 1 Table, accepted for publication in MNRA

    Temporal signatures of leptohadronic feedback mechanisms in compact sources

    Get PDF
    The hadronic model of Active Galactic Nuclei and other compact high energy astrophysical sources assumes that ultra-relativistic protons, electron-positron pairs and photons interact via various hadronic and electromagnetic processes inside a magnetized volume, producing the multiwavelength spectra observed from these sources. A less studied property of such systems is that they can exhibit a variety of temporal behaviours due to the operation of different feedback mechanisms. We investigate the effects of one possible feedback loop, where \gamma-rays produced by photopion processes are being quenched whenever their compactness increases above a critical level. This causes a spontaneous creation of soft photons in the system that result in further proton cooling and more production of \gamma-rays, thus making the loop operate. We perform an analytical study of a simplified set of equations describing the system, in order to investigate the connection of its temporal behaviour with key physical parameters. We also perform numerical integration of the full set of kinetic equations verifying not only our analytical results but also those of previous numerical studies. We find that once the system becomes `supercritical', it can exhibit either a periodic behaviour or a damped oscillatory one leading to a steady state. We briefly point out possible implications of such a supercriticality on the parameter values used in Active Galactic Nuclei spectral modelling, through an indicative fitting of the VHE emission of blazar 3C 279.Comment: 19 pages, 20 figures, accepted for publication in MNRA

    Cancer-related fatigue in palliative care: a global perspective

    Get PDF
    Cancer-related fatigue (CRF) in a palliative care setting is a distressing symptom that can have a negative impact on a patient's quality of life. A range of setting- and disease-specific factors, unknown aetiology and absence of unilateral guidelines make CRF treatment a challenge for clinicians. In the absence of high-quality evidence in favour of any pharmacological and nonpharmacological measures, except exercise, cognitive behavioural therapy and psychosocial interventions, a personalised integrative oncology approach can lead to effective management. Findings suggest adoption of a severity-based symptom-stage adjusted CRF management care pathway, highlighting best practices to illustrate the lived experience of this symptom. Overcoming barriers by staff training, patient education, facilitating communication and patients' self-care, will increase CRF management effectiveness. Future CRF multisymptom or multidimensional nature investigation trials of its underlying mechanisms and new pharmacological and nonpharmacological strategies applied separately or in combination, will help reveal the best approach to CRF diagnosis, assessment and management

    Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

    Full text link
    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μ\mus exceeds the photon duration by two orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information

    Photon-Photon Entanglement with a Single Trapped Atom

    Full text link
    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.Comment: 5 pages, 4 figure
    • …
    corecore